Aluminium Housed Wirewound Power Resistor

Type HSD

All-purpose Heat Sink Resistor for mounting on a Heat Sink chassis.
Aluminium Housed Wirewound Power Resistor Type HSD

Type HSD

For compact construction:
Close mounting of heat sensitive components is possible due to only a slight rise of the temperature on the aluminium profile.

Solder, Cable and “Fast-On” Termination

More resistors in one profile possible.

Specifications:

- **Power rating**: 12 W – 300 W
- **Resistance range (standard)**:
 - HSD 40: R1 – 3K3
 - HSD 70: R22 – 6K8
 - HSD 140: R47 – 18K
 - HSD 210: R82 – 27K
 - HSD 280: R1 – 39K
- **Resistance tolerance**: ±5% / ±10%
- **Temperature Coefficients**:
 - Low ohmic values: 400 ppm
 - Dielectric strength: 2500 VAC peak
 - Working voltage: 1200 VAC
 - Test voltage: 6000 VDC
- **Power Dissipation**:

This graph shows the maximum wattage rating for each of the five possible resistors of standard size corresponding to the heat sink temperature. It is assumed that all resistors are equally loaded.

Mechanical specifications:

<table>
<thead>
<tr>
<th>HSD</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>18.3</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td>39.7</td>
<td>21.4</td>
</tr>
<tr>
<td>140</td>
<td>140</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>210</td>
<td>210</td>
<td>2x80</td>
<td>20</td>
</tr>
<tr>
<td>280</td>
<td>280</td>
<td>2x100</td>
<td>20</td>
</tr>
</tbody>
</table>

Please Order as follows:

HSD 140 A 47R

a. AMP terminals
b. Tinned lugs
c. Screw-on terminals
d. Cable (specified)

Symbols employed:

- W_{MAX}: Maximum required load in resistor
- T_{MAX}: Maximum hot spot temperature requested in resistor ($T_{\text{MAX}} < 220^\circ\text{C}$)
The lower T_{MAX} the higher reliability and lifetime.
- T_{AMB}: Ambient temperature
- R_{TH1}: Thermal resistance. Refer to table Thermal resistances
- T_{H}: Heat sink temperature (chassis).
- T: Temperature on top of the Aluminium profile.

Following conditions are possible:

1. HSD is mounted on a heat sink:
 a. The thermal resistance R_{TH1} of the heat sink is known,
 $$T = W_{\text{MAX}} \times (R_{\text{TH1}} + R_{\text{TH2}})$$
 Check that:
 $$T_{\text{MAX}} = W_{\text{MAX}} \times (R_{\text{TH1}} + R_{\text{TH2}} + R_{\text{TH3}}) + T_{\text{AMB}} < 220^\circ\text{C}$$
 b. The Temperature of the Heat Sink is known,
 $$T = W_{\text{MAX}} \times R_{\text{TH1}} + T_{\text{H}}$$
 Check that:
 $$T_{\text{MAX}} = W_{\text{MAX}} \times (R_{\text{TH1}} + R_{\text{TH2}}) + T_{\text{AMB}} < 220^\circ\text{C}$$
 When the HSD is used close to maximum values heat sink compound should be applieds.

2. HSD is mounted without a heat sink:
 Check that:
 $$T_{\text{MAX}} = W_{\text{MAX}} \times (R_{\text{TH1}} + R_{\text{TH2}}) + T_{\text{AMB}} < 220^\circ\text{C}$$

Designing

The following equations are applied by the dimensioning of the resistors at stationary load.
If more information is required please consult Danotherm.

It’s assumed that the air around the resistors is stationary. (Worst case).

Insulation

Silicone Rubber + MICA. The Silicone is UL-recognized (UL 94 HB) to a working temperature of 220°C. Temperatures of up to 300°C can be endured for shorter periods. This may however cause an expansion of the silicone rubber with a possibility of reducing the dielectric strength.

Thermal Resistances:

<table>
<thead>
<tr>
<th>HSD 40</th>
<th>HSD 70</th>
<th>HSD 140</th>
<th>HSD 210</th>
<th>HSD 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{TH1}</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>R_{TH2}</td>
<td>13</td>
<td>8</td>
<td>4.6</td>
<td>3.3</td>
</tr>
<tr>
<td>R_{TH3}</td>
<td>0.2</td>
<td>0.1</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>R_{TH4}</td>
<td>0.4</td>
<td>0.28</td>
<td>0.14</td>
<td>0.09</td>
</tr>
</tbody>
</table>

*Low-ohmic values on request

Type HSD*