FEATURES

Extruded aluminium housing provides superior heat conduction. Housing deep finned for maximum heat dissipation at natural or forced air convection.

Gold anodized finish for maximum resistance to environmental conditions. Special thermosetting compound with high thermal conductivity. Winding designed to give maximum core coverage and uniformity for even heat dissipation.

Core centerless ground for maximum winding uniformity. Marking at top surface for easy identification after mounting. Complete welded construction terminal to terminal.

ELECTRICAL SPECIFICATIONS

- Ohmic values
 - Series E24. For out of range or not standard ohmic values, consult ATE Technical Dept.
 - Tolerance
 - Standard 5%. Available on request up to 1%.
 - Temperature coefficient
 - ±30 ppm R > 20 Ohm
 - ±50 ppm 1 Ohm < R < 20 Ohm
 - ±100 ppm 0.1 Ohm < R < 1 Ohm
 - Dielectric strength
 - 1500 Vac for RB10
 - 2500 Vac for RB25 and RB50
 - 3500 Vac for RB75, RB101 and RB150
 - 4500 Vac for RB100 and RB250
 - Insulation resistance
 - 10000 MOhm minimum
 - 1000 MOhm after moisture test
 - Overload
 - 5s at 5 times rated power
 - Inductive Models of equivalent physical and electrical specifications are also available with non inductive Ayrton-Perry winding

MECHANICAL SPECIFICATIONS

- Terminal strength
 - 10 lb. pull test; 3 Nm x RB100 and 4 Nm x RB250 max torque
- Solderability
 - Satisfactory when tested in accordance with method 208 of MIL-STD-202. The use of high temperature solder is recommended when resistors work near the maximum specified ratings

MATERIALS

- Core
 - Ceramic steatite or alumina centerless ground
- Resistive Element
 - Copper-nickel alloy or nickel-chrome alloy with specific temperature coefficient
- End caps
 - Stainless steel
- Encapsulant
 - High temperature thermosetting compound
- Housing
 - Aluminium with hard anodic finish
- Standard terminals
 - Copperweld RB10 to RB150
 - Stainless steel for RB100 and RB250

DERATING

ATE RB resistors have an operative temperature range from -55°C to +250°C. Derating is required for reduced chassis area and for high ambient temperature.
Dimensions (mm)

<table>
<thead>
<tr>
<th>ATE Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB10</td>
<td>20.4</td>
<td>35</td>
<td>10</td>
<td>11</td>
<td>19</td>
<td>14.3</td>
<td>15.9</td>
<td>5</td>
<td>2.4</td>
<td>2.4</td>
<td>-</td>
<td>2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>RB25</td>
<td>27.2</td>
<td>49</td>
<td>14</td>
<td>14</td>
<td>27</td>
<td>18.3</td>
<td>19.8</td>
<td>6.5</td>
<td>4.4</td>
<td>2</td>
<td>3.2</td>
<td>2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>RB50</td>
<td>29.2</td>
<td>71</td>
<td>16</td>
<td>16</td>
<td>50</td>
<td>39.7</td>
<td>21.5</td>
<td>7</td>
<td>5.2</td>
<td>2</td>
<td>3.2</td>
<td>2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>RB75</td>
<td>47</td>
<td>73</td>
<td>24</td>
<td>27</td>
<td>48</td>
<td>29</td>
<td>37</td>
<td>11.5</td>
<td>9.5</td>
<td>3.5</td>
<td>4.4</td>
<td>-</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>RB101</td>
<td>47</td>
<td>89</td>
<td>24</td>
<td>27</td>
<td>64</td>
<td>35</td>
<td>37</td>
<td>11.5</td>
<td>14.5</td>
<td>3.5</td>
<td>4.4</td>
<td>-</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>RB150</td>
<td>47</td>
<td>122</td>
<td>24</td>
<td>27</td>
<td>97</td>
<td>58</td>
<td>37</td>
<td>11.5</td>
<td>19.5</td>
<td>3.5</td>
<td>4.4</td>
<td>-</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>RB100</td>
<td>71.5</td>
<td>139</td>
<td>44.5</td>
<td>46</td>
<td>89</td>
<td>-</td>
<td>57.1</td>
<td>20</td>
<td>9.6</td>
<td>5</td>
<td>4.8</td>
<td>69.8</td>
<td>M5</td>
<td>-</td>
</tr>
<tr>
<td>RB250</td>
<td>76</td>
<td>178</td>
<td>55.6</td>
<td>54</td>
<td>114</td>
<td>76.2</td>
<td>63.5</td>
<td>25.5</td>
<td>7.8</td>
<td>6.3</td>
<td>4.8</td>
<td>98.4</td>
<td>M6</td>
<td>-</td>
</tr>
<tr>
<td>Tol.</td>
<td>±0.2</td>
<td>±1</td>
<td>±0.2</td>
<td>±0.5</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.5</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.2</td>
<td>±0.2</td>
</tr>
</tbody>
</table>