RB Wirewound Resistors

- Excellent heat conduction
- Can be used with and without external heatsink
- Strong housing
- Optimized construction with high thermal conduction
- Optimized winding for uniform heat distribution
- Marking at top surface for easy identification
- All internal electrical connections are welded
Type | Nominal Power | Heatsink | Ohm Value Range | Voltage | Insulation Voltage | Weight | Nominal Heatsink temp.
--- | --- | --- | --- | --- | --- | --- | ---
RB10 | 12 | 6 | 0.01 | 10k | 265 | 1500 | 6 | 80
RB25 | 25 | 12.5 | 0.01 | 18k | 550 | 2500 | 14 | 100
RB50 | 50 | 20 | 0.01 | 68k | 1250 | 2500 | 35 | 120
RB75 | 75 | 35 | 0.1 | 50k | 1400 | 3500 | 85 | 120
RB101 | 100 | 40 | 0.1 | 70k | 1900 | 3500 | 115 | 140
RB150 | 150 | 55 | 0.1 | 100k | 2500 | 3500 | 165 | 170
RB100 | 150 | 75 | 0.1 | 100k | 1900 | 4500 | 500 | 150
RB250 | 250 | 100 | 0.1 | 230k | 2300 | 4500 | 900 | 180

*Temperature depends on heatsink dimensions, airflow and ambient temperature.

Table 1

Mechanical Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB10</td>
<td>20</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>19</td>
<td>15</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>2.4</td>
<td>2</td>
<td>2.4</td>
<td>-</td>
<td>2.2</td>
</tr>
<tr>
<td>RB25</td>
<td>27.2</td>
<td>49</td>
<td>14</td>
<td>14</td>
<td>27</td>
<td>18.3</td>
<td>19.8</td>
<td>6.5</td>
<td>4.4</td>
<td>2</td>
<td>3.2</td>
<td>-</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>RB50</td>
<td>29.2</td>
<td>71</td>
<td>16</td>
<td>16</td>
<td>50</td>
<td>39.7</td>
<td>21.5</td>
<td>7</td>
<td>5.2</td>
<td>2</td>
<td>3.2</td>
<td>-</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>RB75</td>
<td>47</td>
<td>73</td>
<td>24</td>
<td>27</td>
<td>48</td>
<td>35</td>
<td>37</td>
<td>11.5</td>
<td>9.5</td>
<td>3.5</td>
<td>4.4</td>
<td>-</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>RB101</td>
<td>47</td>
<td>89</td>
<td>24</td>
<td>27</td>
<td>64</td>
<td>35</td>
<td>37</td>
<td>11.5</td>
<td>14.5</td>
<td>3.5</td>
<td>4.4</td>
<td>-</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>RB150</td>
<td>47</td>
<td>122</td>
<td>24</td>
<td>27</td>
<td>97</td>
<td>58</td>
<td>37</td>
<td>11.5</td>
<td>19.5</td>
<td>3.5</td>
<td>4.4</td>
<td>-</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>RB100</td>
<td>71.5</td>
<td>139</td>
<td>44.5</td>
<td>46</td>
<td>89</td>
<td>57.1</td>
<td>20</td>
<td>9.6</td>
<td>5</td>
<td>4.8</td>
<td>69.8</td>
<td>M5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RB250</td>
<td>76</td>
<td>178</td>
<td>55.6</td>
<td>54</td>
<td>114</td>
<td>76.2</td>
<td>63.5</td>
<td>25.5</td>
<td>7.8</td>
<td>6.3</td>
<td>4.8</td>
<td>98.4</td>
<td>M6</td>
<td>-</td>
</tr>
</tbody>
</table>

- **RB10** to **RB150** have copperweld terminals. **RB100** and **RB250** have stainless steel terminals.
- For maximum power rating, the resistor must be mounted on a heatsink. The maximum power is given in table 1 at nominal heatsink temperature.
- Higher heatsink temperatures the resistor must be de-rated using following formula:

\[P_{\text{max}} = P_{\text{nom}} \left(1 - \frac{T_{\text{Heat sink}}}{250 - T_{\text{nom. Heat sink}}} \right) \]